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ABSTRACT - This is the second and final part of a
series of two papers on nonlinear dynamics and chaos. In
the first part some tools, developed for analysing nonlinear
systems, were described in conjunction with a set of models
commonly used as benchmarks in the literature. This paper
investigates a number of issues concerning the modeling,
signal processing and control of nonlinear dynamics. This
is carried out using the tools and models described in the
first paper. This investigation has thrown some new light
on relevant problems such as model parametrization, model
validation, data smoothing and control of nonliear systems.
These issues are mmvestigated using NARMAX polynomial
models but it is believed that the conclusions are relevant
to nonlinear representations in general. Some numerical
examples are included.

1 INTRODUCTION

Chaotic systems have attracted a great deal of attention in
the last three decades. Systems and models which undergo
chaotic regimes for a rather wide range of operating condi-
tions have been found in virtually every branch of science
and engineering.

In the evolution of the study of chaotic systems, several
distinct but sometimes co-existent phases can be distin-
guished. In the first phase, chaos was recognised as a de-
terministic dynamical regime which could be responsible for
fluctuations that hitherto had been regarded as noise and
therefore modeled as stochastic processes (Lorenz, 1963).
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In a subsequent phase, it was necessary both to develop
criteria to detect chaotic dynamics and to establish dy-
namical invariants to quantify chaos (Guckenheimer, 1982;
Eckmann and Ruelle, 1985; Denton and Diamond, 1991).
Having succeeded in diagnosing chaos, the next step was to
build models which would learn the dynamics from data
on the strange attractor. In this respect a number of
model structures have been investigated such as local linear
mappings (Farmer and Sidorowich, 1987; Crutchfield and
McNamara, 1987), radial basis functions (Broomhead and
Lowe, 1988; Casdagli, 1989), neural networks (Elsner, 1992)
and global nonlinear polynomials (Aguirre and Billings,
1995¢; Kadtke et aliz, 1993). This phase is being currently
investigated with other equally important issues concerning
nonlinear dynamics such as noise reduction and control. It
is the objective of this paper to provide a brief introduction
to these issues.

The outline of the paper is as follows. Section 2 discusses a
number of issues concerning the modeling of nonlinea dy-
namics. Embedding techniques in general and NARMAX
models in particular are briefly presented in that section.
Section 3 is concerned with the noise reduction problem,
which 1s a major limitation in the modeling of nonlinear
dynamics. Section 4 provides a very superficial introduc-
tion to the subject of control and synchronization of chaos,
nonetheless several references are provided for further read-
ing. Some final remarks are made in section 5.

2 MODELING NONLINEAR DYNAMICS

This section gives a quick view at nonlinear dynamics mod-
eling. This vital issue is discussed under several related
headings. A helpful account of some of the main points on
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Figure 1 - The n time series defined by the state variables
of an ntn-order dynamical system can be used to compose
the trajectory in state space.

this subject can be found in the literature (Casdagli et aliz,
1992).

2.1 Embedding Techniques

An nth-order dynamical system y = f(y) can be repre-
sented as a set of n first-order ordinary differential equa-
tions each one governed by a state vartable. The global sys-
tem would therefore have n time variables {y;, y2, ..., yn}
and the solution of such a system could be thought of as n
time series.

In a sense, the n time series mentioned above are obtained
from the original n th-order system by decomposition. Also,
given th n times series it is possible to recover the original
n-dimensional solution by taking each state variable to be
a coordinate of a ‘reconstruction space’ and to represent
each time series in such a space. Thus n time series can
be used to compose or reconstruct the system solution or
trajectory. This 1s illustrated in figure 1.

A difficulty encountered in practice with this approach is
that the order of the system n 1s seldom known and even
when an accurate estimate of this variable exists the num-
ber of measurements will not be as large as n. Take for
instance the atmosphere which is usually thought of as
a high-order system, nonetheless monitoring and weather
forecasting stations only measure a very limited number of
variables of this system in order to make predictions.

This can be described in a more mathematical way by con-
sidering the action of a measuring function h(y) : R" — IR

which operates on the entire state or phase space but which
yields just a scalar which is called the measured variable.
The question which naturally arises at this stage is the fol-
lowing: given f : IR™ — IR" and h(y) : IR" — IR, is it
possible to reconstruct a trajectory or sulution of f from
the scalar measurement h(y)7?

Fortunately, it turns out that this question has an affirma-
tive answer if certain requirements are met (Takens, 1980;
Packard et alii, 1980; Sauer et aliz, 1991). Thus embedol-
ogy is concerned with how to reconstruct the phase space
of a dynamical system of order n from a limited set of mea-
surements ¢ where ¢ < n, and more often than not ¢ = 1.
In other words, the objective is to reconstruct the phase
space of a system from a single time series. The resulting
phase space is usually referred to as embedded phase space,
embedding space or just embedding.

Another question which should be addressed 1s: why should
we be concerned in reconstructing the trajectories of a dy-
namical system? In the companion paper it was shown
that in state (or phase) space the steady state dynamics of
a system are represented by geometrical figures which are
called attractors. A stable autonomous linear system only
has one kind of attractor, a point attractor. However, non-
linear systems may have more complicated attractors such
as limit cycles, tori and the so-called strange attractors.

Therefore if time series are used to reconstruct the phase
space of dynamical systems via embedding techniques, it is
possible to use results from differential geometry and topol-
ogy to analyse the resulting attractors which are geomet-
rical objects in the reconstructed space. Moreover, if the
embedding 1s successful, both the reconstructed and the
original attractors are equivalent from a topological point
of view, or in other words, they are said to be diffecomorphic.

The practical consequences of this are obvious. No matter
how complex a dynamical system might be, even if only one
variable of such a system is measured, it is possible to recon-
struct the original phase space via embedding techniques.
It is also possible to estimate qalitative and quantitative
invariants of the original attractor, such as Poincaré maps,
fractal dimension and Lyapunov exponents, directly from
the reconstructed attractor which is topologically equiva-
lent to the original one. These ideas are illustrated in figure

2.

A convenient but by no means unique way of reconstructing
phase spaces from scalar measurements is achieved by us-
ng delay coordinates (Packard et aliz, 1980; Takens, 1980;
Sauer et alii, 1991). Other coordinates include the singular
value (Broomhead and King, 1986; Albano et alii, 1988)
and deriwatives (Baake et alid, 1992; Gouesbet and Ma-
quet, 1992). A framework for the comparison of several re-
constructions has been developed in (Casdagli ef aliz, 1991)
and three of the most common methods have been studied
in (Gibson et alit, 1992).

A delay vector has the following form
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Figure 2 - In many practical situations the number of mea-
sured variables is hmited. Embedding techniques enable
the reconstruction of the state space even from a single
measurement. The reconstructed (or embedded) and the
original state spaces are equivalent.

y(k) = [y(k) y(k—7) y(k = (d. = Dm))" . (1)

where d. 1s the embedding dimension and 7 1s the delay
time. Clearly, y(k) can be represented as a point in the
d.-dimensional embedding space. Takens (1980) has shown
that embeddings with d. > 2n will be faithful generically
so that there is a smooth map fr : IR% — IR such that

y(k +T) = fr(y(k)) (2)

for all integers k, and where the forecasting time T and 7
are also assumed to be integers. A consequence of Taken’s
theorem is that the attractor reconstructed in IR is diffeo-
morphic to the original attractor in state space and there-
fore the former retains dynamical and topological charac-
teristics of the latter.

In the case of delay reconstructions, the choice of the re-
construction parameters, that is, the embedding dimension
de and the delay time 7 is of the greatest importance since
such parameters strongly affect the quality of the embed-
ded space. The selection of d. has been investigated in
(Cenys and Pyragas, 1988; Aleksi¢, 1991; Cheng and Tong,
1992; Kennel et aliz, 1992). The choice of the delay time
has been discussed in (Albano et alii, 1991; Buzug et alii,
1990; Fraser, 1989; Kember and Fowler, 1993; Liebert and
Schuster, 1989; Billings and Aguirre, 1995; Aguirre, 1995a).
Many authors have suggested that in some applications it
1s more meaningful to estimate these parameters simulta-
neously, this is tantamount to estimating the embedding

window defined as (d. — 1)1 (Albano ef alii, 1988; Buzug
and Pfister, 1992; Martinerie et alif, 1992). Some of these
methods have recently been compared in (Rosenstein et aliz,
1994). There is some evidence that the ‘optimum’ value
of 7 in system identification problems is shorter than for
phas-space reconstructions (Aguirre, 1994). Dynamical re-
constructions from nonuniformly sampled data has been
addressed in (Breedon and Packard, 1992} and phase space
reconstruction of symmetric attractors has been considered
in (King and Stewart, 1992).

Taken’s theorem gives sufficient conditions for equation (2
to hold, that is, in order to be able to infer dynamical in-
variants of the original system from the time series of a
single variable, however no indication is given as to how to
estimate the map fr. A number of papers have been de-
voted to this goal and such methods can be separated into
two major groups, namely local and global approximation
techniques.

The local approaches usually begin by paltitioning the em-
bedding space into neighbourhoods {4} 2y within which
the dynamics can be appropriately described by a linear
map gr : IRf — IR such that

yk+T)=gri(y(k)) fory(k)el;, i=1,...,N, . (3)

Several choices for gr have been suggested in the litera-
ture such as linear polynomials (Farmer and Sidorowich,
1987; Casdagli, 1991) which can be interpolated to obtain
an approximation of the map fr (Abarbanel et alii, 1990).
Simpler choices include zeroth-order approzimations, also
known as local constant predictors (Farmer and Sidorowich,
1987; Kennel and Isabelle, 1992; Wayland et aliz, 1993) and
a weighted predictor (Linsay, 1991).

Global approximators overcome some of the difficulties
faced by local maps. Although global models have prob-
lems of their own, some attention has been devoted to the
investigation of such models (Cremers and Hiibler, 1987;
Crutchfield and McNamara, 1987; Kadtke et aliz, 1993;
Aguirre and Billings, 1995e).

2.2 Representation of Nonlinear Systems

The Volterra series and other related functional represen-
tations were among the first models to be used in nonlinear
approximation. A well known difficulty with such represen-
tations is the enormous amount of parameters required in
order to approximate simple nonlinearities (Billings, 1980).
Related techniques seem to suffer from the same problem
and, in addition, tend to require very large data sets (Giona
et ali, 1991).

One of the most popular representations of dynamical mod-
els 1s the polynomial form. Apart from being easy to inter-
pret, simulate and operate, algorithms for the estimation of
the parameters of polynomial models are currently widely
available. One of the disadvantages of global polynomials,
however, i1s that even for polynomial models of moderate

52 SBA Controle & Automacio /Vol.7 no. 1/Jan., Fev., Mar. e Abril 1996



order, the number of terms can become impractically large
(Farmer and Sidorowich, 1988a; Casdagli, 1989). Using
polynomials to forecast chaotic time series, Casdagli (1989)
has reported that such predictors blow up in the iterative
procedure and suggests that this is because polynomial pre-
dictors give bad approximants to the true dynamics except
very close to the attractor. On the other hand, some of
the problems related to global polynomials are believed
to be connected to the structure of the models (Aguirre
and Billings, 1995b) and promising results have been re-
ported for some systems using nonlinear global polynomials
with simplified structure (Kadtke et aliz, 1993; Aguirre and
Billings, 1994c).

Rational models share with polynomials the advantage of
being linear in the parameters. This feature makes it pos-
sible to use well known and numerically robust algorithms
to estimate the parameters of such models. Moreover, ra-
tional models seem to extrapolate better than polynomials
(Farmer and Sidorowich, 1988a).

The radial basis function (RBF) approach is a global inter-
polation technique with good localization properties and 1t
1s easy to implement as the algorithm is essentially indepen-
dent of the dimension (Broomhead and Lowe, 1988; Cas-
dagli, 1989; Whaba, 1992). However performance of radial
basis functions depends critically upon the centres (Chen et
aler, 1990). For a few hundred data points the choice of the
centres 1s a difficult task and the solution of the problem
could become infeasible (Casdagli, 1989; Billings and Chen,
1992).

Local approximants are concerned with the mapping of a
set of neighbouring points in a reconstructed state space
into their future values. A major problem here is to se-
lect the neighbourhoods because such a choice is critical
and there could be hundreds or even thousands of these
(Farmer and Sidorowich, 1988ab). The size of the neigh-
bourhoods depends on the noise level and the complexity
of the dynamics (Farmer and Sidorowich, 1991).

A simple alternative to nonlinear modeling is the use of
piecewise-linear representations (Billings and Voon, 1987).
The discontinuities among the several linear models which
compose a piecewise-linear model, can provide effects sim-
ilar to those observed in nonlinear models such as chaos
(Mahfouz and Badrakhan, 1990a; Mahfouz and Badrakhan,
1990b). However, as other local representations, the fi-
nal model is piecewise-linear and therefore discontinuous.
Piecewise-linear models have been found to be unreliable in-
dicators of the underlying dynamics in some cases (Billings
and Voon, 1987), and a possible explanation for this is that
such models violate the physically motivated hypothesis of
smooth dynamical systems (Crutchfield and McNamara,
1987). Thus local predictors may not always be suitable
for predicting invariant measures (Brown et aliz, 1991).

Smooth interpolation functions have been suggested as a
way of alleviating the problem caused by discontinuities in
piecewise-linear models (Johansen and Foss, 1993). Such
functions have localised properties which confer to the final
models composed In this way some similarities with radial
basis functions. As would be expected, the quality of the

approximation depends on the choice of several operating
regimes where the system dynamics are approximately lin-
ear. This information has to be available ¢ priort and is
somewhat critical. The problem of selecting the operat-
ing points is similar to the choice of neighborhoods and of
centres in other approaches.

Other representations for modelling nonlinear systems in-
clude Legendre polynomials (Cremers and Hubler, 1987),
neural networks (Elsner, 1992; Principe et aliz, 1992) and
weighted maps (Stokbro and Umberger, 1992).

At present no particular representation can be regarded as
the best for any application and “finding a good represen-
tation is largely a matter of trial and error”™ (Farmer and
Sidorowich, 1988a). On the other hand, it seems that glohal
polynomial models are in many respects simpler and there-
fore more convenient (Kadtke et aliz, 1993).

The remainder of this section investigates the use of global
polynomials with simplified structure to estimate dynami-
cal invariants of strange attractors.

2.3 NARMAX Models

Consider the nonlinear autoregressive moving average
model with exogenous inputs (NARMAX) (Leontaritis and
Billings, 1985a; Leontaritis and Billings, 1985b)

y(k) = F*[y(k - 1), y(k —ny),
ulk—d), ..., uwk—-d—n,+1),
elk), ... ,e(k—m.)] , (4)

where n,, n, and n, are the maximum lags considered for
the output, input and noise terms, respectively and d is the
delay measured in sampling intervals, T5. Moreover, u(k)
and y(k) are respectively input and output time series ob-
tained by sampling the continuous data w(k) and y(k) at
Ty. Furthermore, e(k) accounts for uncertainties, possible
noise, unmodelled dynamics, etc. and F*[-] is some nonlin-
ear function of y(k), u(k) and e(k) with nonlinearity degree
£e Z*. In this paper, the map F*[] is taken to be a poly-
nomial of degree . In order to estimate the parameters of
this map, equation (4) has to be expressed in prediction
error form as

y(k) = ¥T(k —1)0 + £(k) , (5)
where
\IIT(k - 1) = [\Ilg’ju(k - 1) \I’guf(k - 1) \Ilg(k - 1)] s
6 = [65, én. oF] | (6)

and where W7, (k —1) is a matrix which contains linear and

nonlinear combinations of output and input terms up to and
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including time £—1. The matrices \Ilgug(k—l‘) and \I’g(k—li)
are defined similarly. The parameters corresponding to each
term in such matrices are the elements of the vectors Oy,
éyug and (:)_g, respectively. Finally, (k) are the residuals
which are defined as the difference between the measured
data y(k) and the one-step-ahead prediction ¥UT(k — 1)0.
The parameter vector @ can be estimated by minimizing

the following cost function (Chen et aliz, 1989).

Jis(©) = || y(k) — ¥ (k - 1)O || (7)

where || - || is the Euclidean norm. Moreover, least
squares minimization 1s performed using orthogonal tech-
niques in order to effectively overcome two major difficul-
ties in nonlinear model identification, namely 1) numeri-
cal ill-conditioning and ii) structure selection. In order
to circumvent such problems orthogonal techniques may
be used (Billings et alii, 1988; Korenberg and Paarmann,
1991).

2.4 Structure Selection

The number of terms in a polynomial grows very rapidly
even for relatively low values of €, ny, n, and n.. This is
too difficult a problem to be solved by trial and error. How-
ever, effective and elegant solutions to handle this prob-
lem are available. see (Billings et aliz, 1988; Aguirre and
Billings, 1995d) and the survey paper by Haber and Un-
behauen (Haber and Unbehauen, 1990). One solution is
the error reduction ratio (ERR) test (Billings et aliz, 1988;
Billings et «liz, 1989: Korenberg et aliz, 1988). Two advan-
tages of this approach are 1) it does not require the estima-
tion of a complete model to determine the significance of a
candidate term and its contribution to the output, and ii)
the ERR test is derived as a by-product of the orthogonal
estimation algorithm.

Because the final models will be composed of a reduced
number of terms, which is a small fraction of the total num-
ber of candidate terms, the models in this paper can be
viewed as ‘stmplified” or ‘concise’ global polynomials. It is
believed that these models overcome some of the practical
difficulties usually reported for non-simplified polynomials.

In a recent paper it has been shown that the ERR criterion
gives qualitatively similar results as higher order spectrum
techniques in detecting nonlinear interactions within the
underlying dynamics (Aguirre and Billings, 1994a). A cri-
terton similar to ERR has been used to generate radial basis
functions with a small number of parameters (Mees, 1993).
Other techniques can be used in connection with ERR such
as the zeroing-and-refitting approach (Kadtke et aliz, 1993)

and the concept of term clustering (Aguirre and Billings,
1995d).

In a multivariable model with » inputs and m outputs,
the entries in equation (4) are vectors, that is u(k) =
[ug (k) ... wr(B)]7, y(k) = [yi(k) ... ym(k)]" and , e(k) =
[er(k) ... em(k)]T, and both structure detection and pa-
rameter estimation can be performed in a way which is

analogous to the monovariable case (Billings et aliz, 1989).

The quantity ERR provides an indication of which terms to
include in the model. In other words, the ERR test provides
a means of ordering all the candidate terms according to a
hierarchy which depends on the relative importance of each
term. It should be noted that no trial-and-error is necessary
for this. However, the following question arises: how many
terms should be included in the model? A practical way of
addressing this question is by means of information criteria
such as the final prediction error (FPE) (Akaike, 1974),
Akaike’s information criterion (AIC) (Akaike, 1974), the
Bayesian information criterion (BIC) (Kashyap, 1977), the
model entropy {Crutchfield and McNamara, 1987) and the
Schwar: information criterion (Mees, 1993). See (Gooijer
et alii, 1985) for a survey of such techniques.

2.5 Model Validation

The last step in any identification problem is the valida-
tion of the estimated models which is not a trivial problem.
Most ‘conventional’ approaches to model validation are not
particularly attractive when the models are chaotic and
therefore alternative invariants should be used to quantify
the quality and adequacy of the estimated models. When
validating nonlinear models it is desirable that the crite-
ria used should be sensitive to the ‘fundamental’ features
of the models. In this respect it has been shown that bi-
furcation diagrams are far more sensitive to variations in
model structure (Aguirre and Billings, 1994c¢) than many
other nonlinear invariants used in model validation such as
Poincaré maps (Casdagli, 1989; Gottwald et aliz, 1992) cor-
relation dimension (Grassberger et aliz, 1991), Lyapunov
exponents (Abarbanel et ali, 1989; Principe et aliz, 1992),
reconstructed phase-space plots (Adomaitis et aliz, 1990).
Recently, the concept of synchronization, which is rather
well known in the field of control of chaos, has been sug-
gested as a nontrivial test for validating estimated models
(Brown et alii, 1994).

Finally, it should be pointed out that most of the results
described so far in this section have been obtained using
the tools described in the first paper of the series. Many of
the commonly used statistical tools are of very limited use
in assessing dynamical properties of estimated models.

2.6  NARMAX and Other Approaches

Unlike many localized techniques, the NARMAX approach
does not involve finding neighborhoods, thus N, = 1 and
all the data belong to a unique ‘neighbourhood’; that is,
y(k)eU, k=d.,...,N. This reduces the number of data
required to estimate the dynamics. Moreover, the delay
time is taken to be equal to the sampling period, thus 7="T;.

There are a number of important differences between NAR-
MAX polynomial identification and other methods. First, a
NARMAX model includes input terms. This enables fitting
data from non-autonomous systems and therefore estimat-
ing input/output maps, see (Casdagli, 1992; Hunter, 1992)
for related 1deas on this subject. An immediate consequence
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of this is that for input/output systems, it is not required
that the output be on any particular attractor. Omnce an
input/output model has been estimated, a particular input
can be used to generate data on a specific attractor.

Another important difference is the presence of noise terms,
that is, the moving average part of the model. It should be
noted that equation (2) will only hold in the unlikely case
when noise is absent. Any noise in the data or any im-
perfection in the estimate of the map fr will result in an
extra term in the right hand side of equation (2). Such
a term would be responsible for modelling the mismatch
introduced by the noise and unmodelled dynamics. It is
a well known result in the theory of system identification
that if such a term is omtted from the model structure, the
estimate of the map fr will become biased during param-
eter estimation (Soderstrom and Stoica, 1989) and nonlin-
ear models are no exception to this rule (Billings and Voon,
1984).

It seems that when the noise is white and enters the sys-
tem as a purely additive component, the division of the
data into neighbourhoods and subsequent estimation re-
duces the bias. This will not be the case however if the
model is global or if the noise is correlated. Thus 1n or-
der to avoid bias a model for the noise and uncertainties,
‘Il;ué(lc — 1)®yu5 + \I!g(k — 1)Og¢, is included in the model
structure before proceeding to parameter estimation. Once
parameters have been estimated, only the deterministic
part of the model is used, namely V7, (k — l)éyu. This

procedure can handle moderate amounts of white and cor-
related noise.

Summarising, equation (5) is a hybrid model since it is com-
posed of a deterministic part and a stochastic component.
The latter is only used during parameter estimation in or-
der to avoid bias on the former. Therefore, 1 this paper
the models used to generate the surrogate data are purely
deterministic although the stochastic part of the models is
also represented for clarity. Thus, the deterministic com-
ponent of the identified models is an approximation to the

dynamics, that is, fr = \Il'"yru(k —1)Oy, where T'=1T5.

2.7 Modeling of Dynamical Systems

In this section some of examples are given to 1llustrate the
performance of NARMAX polynomials in the modelling of
nonliner systems. It is worth stressing that the stochastic
component of some models is represented for greater clarity
since such component is needed during parameter estima-
tion to avoid bias. However, only the deterministic part is
actually used to iterate the models in order to generate the
figures. The emphasis is on the reconstruction of dynamical
properties.

2.7.1 Poincaré Sections

The first return map for 1000 points taken from data ob-
tained from the Hénon map (Hénon, 1976) is shown in figure
3a. The following model was estimated from the 50 points

(a)

0.5¢

x(k-1)
o

-0.5f

051

x(k-1)
o

-0.5F o P
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Figure 3 - First return map for (a) the Hénon map con-
taminated with noise. Only the encircled data were used in
the estimation, (b) the identified map of equation (8).

marked with circles

z(k) = 0.99433 — 1.3818 2(k— 1) +0.29302 (k—2) . (8)

The first return map for this equation is shown in figure 3b
and has a correlation dimension of D.=1.11 4+ 0.22 which
shows good agreement with the original map for which
D.=1.21 £0.01. The correlation dimension estimated di-
rectly from 20000 data points with the same SNR as above
was D, = 1.76 & 0.06 revealing that the estimated value
1s quite sensitive to such levels of noise. Further improve-
ment can be achieved by using more than 50 points, but
the objective in this example was to show that the map
can be estimated fairly accurately from a short and noisy
time series.

In the case of driven oscillators, the practical reconstruction
of Poincaré sections is restricted to controlled experiments
because of the large amount of data required since only one
point in such sections 1s obtained for each forcing period.
Moreover, small amounts of noise often blur the delicate
fractal structure of the attractor and the Poincaré sections
tend to become fuzzy.
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The fuzziness in the Poincaré sections introduced by the
noise is a direct consequence of superimposing a stochas-
tic component on the top of a purely deterministic tra-
jectory. The Poincaré sections reconstructed using NARX
models do not suffer from such fuzziness because although
the stochastic component was present during the model es-
timation, the effects of such a component were ‘absorbed’
by the moving average (MA) part of the model enabling
unbiased estimation. The NARX part of the model, which
is purely deterministic, will not induce any fuzziness in the
Poincaré sections. The fact that the models are not per-
fect, however, will be revealed by possible distortions in the
shape or the reconstructed attractors.

The following model was obtained from 1500 data points
on the Duffing-Holmes attractor shown in figure 4a

y(k) = 0.84725y(k—1)+ 0.35713 y(k—3)
0.69431x 10 y(k—1)" + 0.12780 x 10 y(k—4)
+  0.61319x107 w(k—1) + 0.40325y(k—2)

—  0.24349x 103 y(k—1)y(k—2)y(k—5) — 0.46215 y(k—5)

+  0.096339 w(k—3) — 0.15316 y(k—2)y(k—3)y(k—4)
—  0.73618x10 2 y(k~1)*y(k—5)
+  0.07T1822 y(k—1)y(k—3)y(k—4)

+  UE(k—1)0¢+E(k) . (9)

An estimate of the original Poincaré section is shown in fig-
ure 4b which was obtained by iterating equation (9). This
reconstructed Poincaré section is very similar to the original
one.

2.7.2 Bifurcation Diagrams

Using 1500 data points generated by simulation of the mod-
ified van der Pol equation (see first paper), with this SNR,
sampled at T; =7 /80, the following NARMAX model was
estimated

y(k) = 0.83599y(k—1) 4+ 0.87488x 107 y(k—14)
+  0.68539x 10 u(k—2) 4 0.46776x 10 2y(k—1)
—  0.47330y(k—6) + 0.12786 y(k—2)
+  0.37341y(k—3) — 0.22840 x 10 2u(k—1)
+  0.49504x 107 y(k—5) — 0.014841 y(k—1)°y(k—2)
—  0.081389 u(k—3) + 0.038305 u(k—5)

2

- 0.13554x 107 w(k—4) + 0.20404x 102 y(k—2) y(k—3)

—  0.34234% 107 % y(k—1)y(k—6)°
+  0.35999x 10 2 y(k—2)y(k—4)y(k—6)

+ UF(k—1)O+E(k) - (10)

This model also has a self-sustained oscillation with w =

1.56rad/s.

Figure 5 shows that the identified model (10) does repro-
duce the major bifurcation patterns of the original system.

(a)

y(t-Tp)

y(k-Tp)

1.5

Figure 4 - Poincaré sections (a) obtained from a noisy or-
bit of the Duffing-Holmes oscillator, (b) of the identified
model of equation (9). A=0.3 and w=1rad/s, T, = 5.

See figure 14a of the first paper in the series for the original
bifurcation diagram. This is usually more demanding than,
for instance, requiring that a model should reproduce in-
variants associated with particular attractors (Aguirre and

Billings, 1994c).

2.7.3 Original and Embedded Trajectories

This section reports some results concerning the use of
NARMAX polynomials in reproducing embedded and orig-
inal trajectories of strange attractors. To investigate this
the well known Chua’s double scroll attractor is used. If
all variables are measured, multivariable NARMAX mod-
els can be fitted to the data and the iterated discrete-time
outputs can be used to reconstruct the original attractor
geometry in state-space.

The data in figure 6a were used to identify the following
multivariable model
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Figure 5 - Bifurcation diagram of the identified model of
equation (10). w=4rad/s.

z(k) = 0.11282x10x(k — 1) + 0.5586T y(k — 1)
0.47190x 10 ' z(k — 1)°
+ 0.39895x 10 y(k — 1)z(k — 1)°
— 0.31229x107%z(k = 1) 4 0.18363x 107" z(k — 1)
+ Ve (b —1)O¢c e +Ea(k)

2

2

y(k) = 091948 y(k — 1) — 0.10392x 10 z(k — 1)
+ 0.70843x 107 z(k — 1) 4+ 0.67800x 107" z(k — 1)
— 0.13424x 1072 p(k — 1)7
+ 0.44206x10 % z(k - 1)%y(k - 1)
+ U e (b —1)0¢ ¢ e +&y(k)

s(k) = 0.96628 z(k — 1) — 0.95854 y(k — 1)
— 0.36719x10 ' z(k—1) —0.55765x 10 y(k — 1)*
0.10333x 10 2 z(k — 1)°
0.0020536 z(k—1)y(k—1)z(k—1)
Ve ey (b — 1)Oc, e e, +E:(k) (11)

+ 4+ +

This estimated model settles to a strange attractor which
closely resembles the original double scroll Chua’s attractor,
see figure 6b.

Similar models for the Lorenz and Rossler attractors have
been reported in (Aguirre and Billings, 1995¢).

3 NOISE REDUCTION

A difficulty which appears to be common to most ap-
proaches for modelling nonlinear dynamical systems and
chaotic attractors is that realistically noise will be present
in the data. In particular, it has been conjectured that the
local divergence of nearby orbits in a chaotic system seems
to impose a natural limit on the accuracy of prediction-
based identification algorithms when the data are noisy
(Aguirre and Billings, 1995¢). Consequently, there has been
great motivation to develop filtering techniques for chaotic

x(t)
(b)
4
24
2 04
N
24,
4l
05 L
)
0.5 2 0 2
y(k) x(K)

Figure 6 - (a) Noisy trajectory used for identification,
SNR=72.9, 39.9 and 75.5dB for z, y and z components, re-
spectively. (b) Double scroll Chua's attractor reconstructed
from the identified model in equation (11).

systems. This comprises one of the current phases in the
investigation of chaos (Mitschke, 1990; Chennaoui et al,
1990; Schreiber and Grassberger, 1991; Broomhead et aliz,
1992; Davies, 1992; Grassberger et aliz, 1993; Holzfuss and
Kadtke, 1993).

Some authors assume that some kind of a prior: knowl-
edge concerning the original system 1s available such as a
piece of noise-free data (Marteau and Abarbanel, 1991),
the structure of the maps describing the underlying dy-
namics (Davies, 1992), or even the complete maps, that
is, structure and parameters are known (Hammel, 1990;
Ozaki, 1993). However, a clear mitation in any real noise
reduction problem is that the underlying dynamics are not
usually known a prier: and the map has to be estimated
(learned) from the noisy data as an integral part of the
noise reduction process. Consequently, the noise will pose
limitations on the amount of noise which can effectively be
eliminated. In the field of nonlinear dynamics, the main
objective of filtering a chaotic time series is to enable the
reconstruction and estimation of dynamical invariants such
as Poincaré sections, Lyapunov exponents and fractal di-
mensions.
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Another objective of filtering nonlinear data is to enable
the identification of dynamically valid models which would
reproduce the aforementioned invariants from sequences of
filtered data. In a first attempt to solve this identifica-
tion problem, global nonlinear predictors were used to filter
the data (Aguirre and Billings, 1995¢). In such a proce-
dure the noise was separated from the signal by means of
(very) short-term predictions. Because a chaotic predictor
actually amplifies uncertainties in some ‘direction’ in state
space, the aforementioned approach cannot be used to fil-
ter the noise by successive passes through the data and this
therefore limits the achievable noise reduction.

This problem can be alleviated by using global smoothers
because, unlike prediction-based techniques, smoothers are
well suited for filtering chaotic data via successive noise-
reduction iterations (Aguirre et aliz, 1995).

3.1 Filtering Techniques

It 1s usually assumed that the noise is purely additive, or in
other words the noise is entirely observational (Crutchfield
and McNamara, 1987; Casdagli et alii, 1991; Grassberger et
alii, 1991). Thus the noise reduction problem can be stated
as follows: given a chaotic time series x(t), it is desired to
filter the measured data y(t)=xz(t)+e(t), where e(t) is the
additive noise, in order to recover z(t). This is useful in
‘cleaning’ Poincaré sections and embedded attractors which
have been blurred by noise.

Another aspect of this problem is to find a ‘noise-reduced’
orbit (1) from which invariants such as Ay, D. and the
attractor geometry can be more accurately estimated than
if the noisy data y(¢) were used. This is sometimes referred
to as statistical noise reduction as opposed to recovering
z(t) from y(¢) which has been called detailed noise reduction
(Farmer and Sidorowich, 1991). In this paper, the objective
is to be able to identify dynamically valid models from g(t).
Filtering based on model predicted outputs, whilst reducing
the noise content in the data, will not guarantee that y(t)
remains close to y(t) (and ultimately close to z(t)) if the
latter is chaotic. Thus, to ensure that g(¢) remains close to
y(t), the following cost function can be used

N
Ine =Y AT [Gk) = gu(@(k = )] + Jo [9(k) — y(k)]}
k=1
(12)

where N is the number of points in the data, Ji[] and
Jo[] indicate functions which are usually metric norms and
gr(-) are linear maps which describe the dynamics in a
neighbourhood of a point on the true orbit. Clearly Ji[]
penalizes deviations from the true deterministic dynamics
described by gr(-) while Jo[] guarantees that the cleaned
orbit remains close to the measured orbit.

In particular, the following cost functions have been used
(Kostelich and Yorke, 1988; Kostelich and Yorke, 1990)

Ji[) =1 90k) — gu(@k = D) I + (| gtk +1) = gu(7(k)) ||

(13)
where || - |} is the Euclidean norm, and
o[ =) G(k) = y(k) | (14)
Another option is to choose J2[-] as above and
Jil1 =2l g (g(k)) — gtk + 1) |7 p (15)

where pj are Lagrange multipliers (Farmer and Sidorowich,
1991).

In the field of system identification, improving the signal to
noise ratio (SNR) is also of interest because this facilitates
both the unbiased estimation of the parameter vector and
the correct determination of the model structure. The chief
idea 1is to estimate the noise-free data and then use this
estimate to perform parameter estimation. A way of doing
this i1s to use the following predictor which can be derived
from equation (5)

y(f) = ‘I’;u(t - 1)G)yu (16)

It should be realised that in the last equation the parame-
ter vector G)yu was estimated from the original noisy data
as 1s indicated by the absence of the hat on the subscript
y. On the other hand, the matrix \Ilgu(f,—l) was Tormed
using predicted values of the data, that is y(t) up to and
including time ¢ —1. Because y(¢) is an estimate of z(¢),
equation (16) can be used in suboptimal parameter esti-
mation schemes (Billings and Voon, 1984). However, if the
data were chaotic after a few iterations y(¢) would not be
an accurate estimate of x(¢) because of the sensitive de-
pendence on initial conditions. Therefore the use of y(t) in
suboptimal schemes seems somewhat restricted for chaotic
systems. The next two sections describe approaches which
overcome some of these problems.

3.2 The Resetting Filter

The following predictor has been suggested to overcome
some of the difficulties associated with the filtering of
chaotic data (Aguirre and Billings, 1995¢)

§(t) = U, (t — 1) Oyy + UT(t — 1) O (17)

It should be noted that in this case y(¢) is predicted based
on previous values of the measured data y(s), s <¢—1, and
not based on previously predicted values such as in equation
(16). Moreover, since this predictor is used to predict only
one step into the future, the predicted value y(t) is, in most
cases, guaranteed to remain close to the data y(¢). This can

58 SBA Controle & Automacio /Vol.7 no. 1/Jan., Fev., Mar. e Abril 1996



be interpreted as being a consequence of the resetting effect
achieved by using measured data to initialise the predictor
at each step. The predictor in equation (17) will be referred
to as the resetting filter (RF) and it is adequate for filtering
chaotic signals.

The qualitative effect attained by the resetting filter is, in
some respects, analogous to other methods. The resetting
effect of the RF guarantees that Js[] (see equation (12))
is kept small. Moreover, the parameter vector of the RF is
obtained by minimising Jis in equation (7), which is clearly
analogous to J;[-] in equation (12). The main difference
is that whilst gr(-) usually represents local linear maps,
UT(t — 1) © is a global nonlinear map which may include
inputs and restdual in addition to output terms.

Predictor-based filtering for chaotic systems will not work
in general because of the inability of making long-term
accurate predictions along the unstable manifold. There-
fore in such directions, the filter would actually amplify
the noise (Schreiber and Grassberger, 1991). The same is
valid for the RF, but to a much lesser extent because of the
resetting effect which will guarantee that any noise ampli-
fication along the unstable manifold is kept to a minimum.
However, if several passes through the data are required to
attain the desired level of noise reduction, it 1s inevitable
that the effect of positive Lyapunov exponents be mani-
fest. Consequently, the filtered data may not resemble the
original sequence and, in fact, might have a greater noise
content than the raw data.

3.3 Global Nonlinear Smoothers

The difficulty with the resetting filter in equation (17) is
that it only uses past information to predict the future.
However, the dynamics can only be predicted with any cer-
tainty as t — oo along the stable manifold. Conversely, the
dynamics can only be ‘predicted’ along the unstable man-
ifold in reverse time, that is as ¢ — —oo (Schreiber and
Grassberger, 1991). In other words, in order to estimate
y(t), future information as well as past information is re-
quired (Schreiber and Grassberger, 1991).

This motivates the search for NARMAX smoothers of the
form

y(t) = Ff[y(t—ny),.“,y(_t——1),y(t+1),,..,y(t+ny),
wt—d—n.+1),....u(t—d),u(t+d),...
coou(t+d 4, — 1),

(it —1),... . &(t—ne) ]+ £&(1) . (18)

It should be noted that equations analogous to (5)—(7) can
be derived for the smoother in equation {18). Moreover,
the ERR criterion, used to select the most important terms
to compose a NARMAX model, can also be used to select
the structure of the smoother and the same least squares
algorithm can be used to estimate the parameters.

From a dynamical point of view, the smoother in equation
(18) will also succeed in predicting the dynamics along the

1.2F
0.8
0.4r 1
0 200 500 700
N
Figure 7 - Noise-free original time series for the
Mackey-Glass model
1.2F
0.8
0.41
0 200 R} 500 700

Figure 8 - Noisy (raw) time series for the Mackey-Glass
model

unstable directions because it contains terms which relate
to the future. Such terms will enable ‘predicting’ in reverse
time since orbits converge along the unstable manifold as
t — —oc. An iterative procedure for smoothing data us-
ing nonlinear smoothers has been given in (Aguirre et alii,
1995).

3.3.1 An Example

Zero-mean Gaussian noise was added to a set of data ob-
tained from the Mackey-Glass model (Mackey and Glass,
1977) (see first paper in the series). The resulting records
with SNR=40.2dB were smoothed with global nonlinear
smoothers. Figures 7-9 respectively show the noise-free,
noisy and smoothed data for the Mackey-Glass model and
figure 10 shows the resulting data filtered following the
RF approach. These figures make it plainly clear that
prediction-type approaches for noise reduction are not suit-
able for chaotic data.
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Figure 9 - Smoothed time series for the Mackey-Glass
model. Terms with both negative and positive lags were
used to compose the smoother, N, =10.

1.2r

0.8

0.4r 1

0 200 } 500 700

Figure 10 - Filtered time series for the Mackey-Glass
model. Only terms with negative lags were used to compose
the resetting filter. N, =10.

4 CONTROL AND SYNCHRONIZATION
OF CHAOS

Is chaos a beneficial dynamical steady state? This is a cen-
tral question in the control of chaotic systems. Of course,
if the answer to the above question Is yes, applied scien-
tists and control engineers would be investigating ways of
provoking chaos rather than suppressing it. A negative an-
swer, on the other hand, would prompt researchers in the
opposite direction.

Because of the sensitive dependence on initial conditions,
displayed by chaotic systems, it is impossible to make ac-
curate long-term predictions of such systems. In many sit-
uations, however, it is desirable that the system under in-
vestigation be predictable. Furthermore, the appearance of
chaotic dynamics is not always welcome because in some
situations it has been associated with abnormal behaviour

{Glass and Mackey, 1988, pages 177, 179).

In other applications the onset of chaos seems to have sev-
eral advantages. For instance, it has been argued that “a
cognitive system must be chaotic in order to perform ef-
fective signal processing” (Nicolis, 1984). Further, chaos

enhances heat transfer (Chang, 1992), improves mixing
in chemical reactions (Ottino, 1992), reduces idle-channel
tones in modulators (Schreier, 1994) and seems to have a
promising future in secure communication systems (Cuomo
el aliz, 1993, Wu and Chua, 1993; Parlitz ef aliz, 1992).
In addition, some authors have suggested that chaotic dy-
namics indicate a healthy state as opposed to the diseases
which manifest as physiological periodic signals (Glass et
aliz, 1987; Goldberger ef alit, 1990). The matter of how
healthy chaos is, however, is far from settled (Pool. 1989).
Consequently, techniques for controlling nonlinear dynam-
ics are required in order to provoke or suppress chaos or any
other dynamical regime according to the particular appli-
cation at hand (Chen and Dong, 1993a; Ditto and Pecora,
1993; Hunt and Johnson, 1993).

Most of the works concerned with the control of chaos are
devoted to stabilising a chaotic system to regular dynam-
ics, that is, fixed points, periodic orbits or quasiperiodic
regimes. The related problem of driving a system from a
regular to a chaotic regime has received less attention. This
type of control could be important in situations where chaos
is not. only welcome but also desirable (Goldberger et alit,
1990; Chang, 1992; Ottino, 1992; Cuomo et aliz, 1993; Wu
and Chua, 1993).

Clearly, chaos i1s per se neither beneficial nor harmful as
described by James Gleick “In some applications, turbu-
lence is desirable — inside a jet engine, for example, where
efficient burning depends on rapid mixing. But in most,
turbulence means disaster. Turbulent airflow over a wing
destroys lift. Turbulent flow in an oil pipe creates stupefy-
ing drag” (Gleick, 1987, p. 122). Therefore it seems appro-
priate to search for control schemes which would perform
well in both situations.

If on the one hand sensitivity to initial conditions hampers
prediction-based control schemes, on the other hand such
a property might turn out to be greatly advantageous from
a control point of view. To see this it should be recalled
that if a system is sensitive to initial conditions, a small
perturbation at time £y can provoke relatively large effects
at time ¢t > tg. This means that to achieve a certain control
objective may require a much smaller control action if the
system were chaotic. The problem of course is to determine
how and when should the control action be applied. Some
works in this direction have appeared in the literature (Ott
et alir, 1990; Ditto et aliz, 1990; Garfinkel et aliz, 1992;
Nitsche and Dressler, 1992; Romeiras et aliz, 1992; Shinbrot
et alii, 1990; Spano et alii, 1991).

Many different techniques have been investigated in the
context of controlling chaos. Most methods can be grouped
into two categories. When it is desired that chaos be sup-
pressed the approaches are labelled under control of chaos
and when the main objective is to make a system follow
a chaotic trajectory the problem at hand is referred to as
synchronization of chaos.

Chaos can be suppressed by the addition of small ampli-
tude perturbations (Braiman and Goldhirsch, 1991), ran-

dom perturbations (Kapitaniak, 1991), by parametric driv-
ing (Dorning et aliz, 1992; Fronzoni et alit, 1991; Lima and
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Pettini, 1990), by means of feedback (Liu et aliz, 1994).

The problem of synchronization has been investigated in
(Chua el alii, 1993; Kocarev et alir, 1993; Ogorzalek, 1993;
Pecora, 1990; Wu and Chua, 1993).

The stabilization of chaotic systems has been achieved by
applying feedback (Chen and Dong, 1993b; Dedien and
Ogorzalek, 1994; Hunt, 1991; Pyragas, 1992; Roy et alu,
1992), frequency harmonic balance techniques (Genesio and
Tesi, 1993; Genesio and Tesi, 1992), conventional control
techniques (Hartley and Mossayebi, 1993), open plus closed
loop control (Jackson and Grosu, 1994), dynamical vibra-
tion absorbers (Kapitaniak et alii, 1993), adaptive control
(Sinha et aliz, 1990; Vassiliadis, 1993) and quantitative
feedback design (QFD) (Yau et alit, 1993). The control of
multiple attractor systems has been investigated i (Jack-
son, 1990).

Most of the references above are concerned with systems
which are chaotic before control is applied. However, chaos
has been detected in control systems in which the plant
was not chaotic. Conditions for the occurrence of chaos in
feedback systems (Genesio and Tesi, 1991), adaptive control
(Mareels and Bitmead, 1986; Mareels and Bitmead, 1988;
Golden and Ydstie, 1992) and in digital systems (Ushio and
Hsu, 1987) have been reported in the literature.

The use of identified models in the design of control schemes
has been addressed in (Aguirre and Billings, 1994b; Aguirre
and Billings, 1995a; Aguirre, 1995b). It turns out that as
long as an identified model reproduces some of the major
dynamical features of the system, such a model can be used
effectively In control problems. Many control schemes do
not require a model or may even work with a model which is
not dynamically valid but in such cases the control effort is

usually greater and the control quality significantly poorer.

5 FINAL REMARKS

The subject of nonlinear dynamical systems has attracted
great attention in recent years. It is therefore natural that
various techniques for modeling and reconstructing such
systems should be investigated. In this respect a landmark
has been Taken’s theorem and a number of subsequent re-
sults which today form the field of embedology. Parallel to
these results, other techniques were developed by the en-
gineering community. Such methods for the identification
of nonlinear systems used other model structures such as
Volterra and Wiener models, NARMAX models and neu-
ral networks. In the first part of this paper, the basic idea
of embedding techniques has been reviewd. Similarly, the
estimation on NARMAX polynomial models has been dis-
cussed and some differences between such approaches have
been pointed out. The modeling of some nonhnear systems
has been illustrated by numerical examples.

A major limitation in obtaining a good model for a nonlin-
ear system is the noise present in the data. Noise can be, in
a few cases, kept to a minimum but cannot be totally elim-
inated. Consequently there has been great interest in noise
reduction algorithms. Some of such algorithms have been

reviewed in a rather general framework and two algorithms,
the resetting filter and nonlinear smoothers, have been de-
scribed in some detail. It has been pointed out that if the
data are chaotic special algorithms are usually required to
achieve effective noise reduction.

Finally, a major issue in nonlinear dynamics nowadays is
the control of chaotic systems. An enormous amount of
papers have been published on this subject in the last years
and a thorough review would be impossible. Nonetheless,
several relevant references have been provided in order to
enable the reader to further investigate this topic.

Throughout the paper it has been shown how NARMAX
models can be used in the various problems concerning the
modeling, noise reduction and control of nonlinear systems
and chaos.
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