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ABSTRACT - This is the second and final parI. of a
series of two papers on nonlinear dynamics and chaos. In
the first parI some tools. developed for analysing nonlinear
systems, were c!esniiJec! in conjunction with a seI. of moc!els
commonly llsed as benchmarks in the literature. This papel'
investigates a llllIllber of isslles concerning the modeling,
signal processillg anel control of nonlinear e1ynamics. This
is carrieel ou! llsillg tbe tools and 1D0elels described in the
first papel'. This inwstigation has th1'Own some new light
on relevant p1'Oblems such as modeI parametrization, modeI
validation. data smoothing anel control of nonliear systems.
These issues are inwstigated using NARMAX polynomial
modeIs but it is believed that the conclusions are relevant
to nonlinear represelltaJiolls in general. Some numerical
examples are includecl.

1 INTRODUCTION

Chaotic systems have attractec! a great deal of attention in
the last three decades. Systems and modeIs which undergo
chaotic regimes for a rather wide range of operating condi­
tions have been found in virtually every branch of science
and engineering.

In the evolution of the study of chaotic systems, several
distinct but sometimes co-existent phases can be distin­
guished. In the first phase, chaos was recognised as a de­
terministic dynamical regime which could be responsible for
f!uctuations that hitherto had been regarded as noise and
therefore modeled as stochastic processes (Lorenz, 1963).
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In a subsequent phase, it was necessary both to develop
criteria to detect chaotic dynamics and to establish C!y­
namical invariants to quantify chaos (Guckenheimer, 1982;
Eckmann and Ruelle, 1985; Denton and Diamond, 1991).
Having succeeded in diagnosing chaos, the next step was to
build modeIs which would learn the dynamics f1'Om data
on the strange attractor. In this respect a number of
model structures have been investigated such as local linear
mappings (Farmer and Sidorowich, 1987; Crutchfield and
McNamara, 1987), radial basis functions (B1'Oomhead and
Lowe, 1988; Casdagli, 1989), neural networks (EIsner, 1992)
and global nonlinear polynomials (Aguirre and Billings,
199.5c; Kadtke et alii, 1993). This phase is being currently
investigated with other equa.lly important issues concerning
nonlinear dynamics such as noise reduction and control. It
is the objective of this papel' to p1'Ovide a brief int1'Oduction
to these issues.

The outline of the papel' is as follows. Section 2 discusses a
numbel' of issues concerning the modeling of nonlinea dy­
namics. Embedding techniques in general and NARMAX
modeIs in particular are brief!y presented in that section.
Section 3 is concerned with the noise reduction problem,
which is a major limitation in the modeling of nonlinear
dynamics. Section 4 provides a very superficial int1'Oduc­
tion to the subject of control and synchronization of chaos,
nonetheless several references are p1'Ovided for further read­
ing. Some final remarks are made in section 5.

2 MODELlNG NONLlNEAR DYNAMICS

This section gives a quick view at nonlinear dynamics 1D0d­
eling. This vital issue is discussed under several related
headings. A helpful account of some of the main points on
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which operates on the entire state OI' phase space but which
yields just a scala.r which is caIled the measured variable.
The question which naturaIIy arises at this stage is the fol­
lowing: given .f : IR" --;. IR" and h(y) : IR" ~ IR, is it
possible to reconstruct a trajectory OI' sulution of .f from
the scalar measurement h( y)?

Y3

Yl

Figure 1 - The n time series defined by the state variables
of an ntn-order dynamical system can be used to compose
the trajeetory in state space.

Fortunately, it turns out that this question has an a:ffirma­
tive answer if certain requirements are met (Takens, 1980;
Packard et alii, 1980; Sauer et alii, 1991). Thus embedol­
ogy is concerned with how to reconstruet the phase space
of a dynamical system of order n from a limited set of mea­
surements q where q < n, and more often than not q = 1.
In other words, the objective is to reconstruct the phase
space of a system from a single time series. The resulting
phase space is usuaIIy referred to as embedded phase space,
embedding space or just em.bedding.

Another question which should be addressed is: why should
we be concerned in reconstrueting the trajectories of a dy­
namical system? In the companion papel' it was shown
that in state (01' phase) space the steady state dynamics of
a system are represented by geometrical figures which are
caIIed attractors. A stable autonomous linear system only
has one kind of attractor, a point attraetor. However, non­
linear systems may have more complicated a.ttractors such
as limit cycles, tori and the so-caIIed strange attraetors.

Y2

y(to)

this subject can be found in the literature (Casdagli et alii,
1992).

2.1 Embedding Techniques

An n th-order dynamical system iJ = f(y) can be repre­
sented as a set of n first-order ordinary differential equa­
tions each one governed by a state variable. The global sys­
tem would therefore have n time variahles {Yl, Y2, ... , y,,}
and the solution of such a system could be thought of as 11

time series.

In a sense, the n time series mentioned above are obtained
from the original n th-order system by decomposition. AIso,
given th 11 times series it is possible to recover the original
n-dimensional solution by taking each state variable to be
a coordinate of a 'reconstruction space' and to represent
each time series in such a space. Thus n time series can
be used to compose ar reconstruct the system solution OI'

trajectory. This is iIIustrated in figure 1.

A di:fficulty encountered in praetice with this approach is
that the order of the system n is seidom known and even
when an accurate estimate of this variable exists the num­
bel' of measurements wiII not be as large as n. Take for
instance the atmosphere which is usuaIIy thought of as
a high-order system, nonetheless monitoring and weather
forecasting stations only measure a very limited numbel' of
variables of this system in order to make predictions.

Therefore if time series are used to reconstruct the phase
space of dynamicaI systems via embedding techniques, it is
possible to use results from differentiaI geometry and topol­
ogy to analyse the resulting attractors which are geomet­
rical objeets in the reconstructed space. Moreover, if the
embedding is successful, both the reconstructed and the
original attraetors are equivalent from a topological point
of view, OI' in other words, they are said to be diffeomorphic.

The practical consequences of this are obvious. No matter
how complex a dynamical system might be, even if only one
variahle of such a system is measured, it is possible to recon­
struct the originaI phase space via embedding techniques.
It is also possible to estimate qalitative and quantitative
invariants of the original attraetor, such as Poincaré maps,
fractal dimension and Lyapunov exponents, directly from
the reconstructed attractor which is topologically equiva­
lent to the originaI one. These ideas are iIIustrated in figure
2.

A convenient but by no means unique way of reconstructing
phase spaces from scalar measurements is achieved by us­
ing delay coordinates (Packard et alii, 1980; Takens, 1980;
Sauer et alii, 1991). Other coordinates include the singular
value (Broomhead and King, 1986; Albano et alii, 1988)
and derivatives (Baake et alii, 1992; Gouesbet and Ma­
quet, 1992). A framework for the comparison of several re­
constructions has been developed in (Casdagli et alii, 1991)
and three of the most conU11on methods have been studied
in (Gibson ei alii, 1992).

A delay veetor has the folIowing form

This can be described in a more mathematical way by con­
sidering the aetion of a measuring function h(y) : IR" --;. IR
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Figure 2 - In many practical situations the number of mea­
sured variables is limited. Embedding techniques enable
the reconstruction of the state space even from a single
measurement. The reconstructed (OI' embedded) and the
original state spaces are equivaIent.

window defined as (de - l)T (Albano et alú, 1988; Buzug
and Pfister, 1992; Martinerie et alii, 1992). Some of these
methods have recently been compareel in (Rosenstein et alii,
1994). There is some evielence that the 'optimum' vaIue
of T in system ielentification problems is shorter than for
phas-space reconstructions (Aguirre, 1994). Dynamical re­
constructions frol11 nonuniformly sampleel data has been
aelelressed in (Breeelon and Packarel, 1992) and phase space
reconstruction of symmetric a.ttractors has been consielereel
in (King anel Stewart, 1992).

Taken 's theorem gives sufficient conelitions for equation (2
to holel, that is, in order to be able to infer elynamical in­
variants of the original system from the time series of a
single variable, however no indication is given as to how to
estimate the map fT' A number of papers have been de­
voteel to this goal and snch methoels cano be separated into
two major groups, namely local anel global a.pproximation
techniqnes.

The local approaches usually begin by partitioning the em­
bedeling space into neighbourhoods {U;}~\ within which
the elynamics can be appropriately elescribed by a linear
map gT : IR~ -+ IR such that

y(k + T) ~ gT;(y(k)) for y(k) E Ui, i = 1, ... , Nn . (3)

y(k) = [y(k) y(k - T) ... y(k - (de - I)TW, (1)

where de is the embedding dimension and T is the delay
time. Clearly, y( k) can be represented as a point in the
de-dimensionaI embedding space. Takens (1980) has shown
that embeddings with de > 2n will be faithful generically
so that there is a smooth map h : IRde -+ IR such that

for ali integers k, and where the forecasting time T and T

are also assumed to be integers. A consequence of Taken's
theorem is that the attractor reconstructed in IR~ is diffeo­
morphic to the original attractor in state space and there­
fore the fonner retains dynamical and topological charac­
teristics of the latter.

In the case of delay reconstructions, the choice of the re­
construction parameters, that is, the embedding dimension
de and the delay time T is of the greatest importance since
such parameters strongly affect the quality of the embed­
ded space. The selection of de has been investigated in
(Cenys and Pyragas, 1988; Aleksié, 1991; Cheng and Tang,
1992; Kennel et alii, 1992). The choice of the delay time
has been discussed in (Albano et alii, 1991; Buzug et alii,
1990; Fraser, 1989; Kember and Fowler, 1993; Liebert and
Schuster, 1989; Billings and Aguirre, 1995; Aguirre, 1995a).
Many authors have suggested that in some applications it
is more meaningful to estimate these parameters simulta­
neously, this is tantamount to estimating the embedding

Several choices for gT have been suggesteel in the litera­
ture such as linear polynomiaIs (Farmer anel Sielorowich,
1987; Casdagli, 1991) which can be interpolateel to obtain
an approximation of the map h (Abarbanel et alii, 1990).
Simpler choices incluele zeroth-order approximations, aIso
known as local constant predictors (Farmer and Sielorowich,
19B7; Kennel anel Isabelle, 1992; Wayland et alii, 1993) anel
a weighted predictor (Linsay, 1991).

One of the most popular representations of dynamical mod­
eIs is the polynomial formo Apart from being easy to inter­
pret, simulate and operate, algorithms for the estimation of
the parameters of polynomial models are currently widely
available. One of the disadvantages of global polynomials,
however, is that even for polynomial models of moderate

2.2 Representation of Nonlinear Systems

The Volterra series anel other related functional represen­
tations were among the first modeIs to be useel in nonlinear
approximation. A well known elifficulty with such represen­
tations is the enormous amount of parameters requireel in
order to approximate simpIe nonlinearities (Billings, 1980).
Related techniques seem to suffer from the same problem
and, in addition, tend to require very large data sets (Giona
et alii, 1991).

Global a.pproximators overcome some of the elifficulties
faced by local maps. Although global moelels have prob­
lems of their own, some attention has been elevoted to the
investigation of such models (Cremers anel Hübler, 1987;
Crutchfield anel McNamara, 1987; Kaeltke et alii, 1993;
Aguirre and Billings, 1995e).

(2)y(k + T) = h(y(h~))

52 SBA Controle & Automação jVol.7 no. 1jJan., Fev., Mar. e Abril 1996



oreler, the number of terms can become impractically large
(Farmer anel Sielorowich, 198830; Caselagli, 1989). Using
polynomials to forecast chaotic time series, Caselagli (1989)
has reporteel that such preelictors blow up in the iterative
proceelure anel suggests that this is because polynomial pre­
elictors give bael approximants to the true elynamics except
very elose to the attractor. On the other hanel, some of
the problems relateel to global polynomials are believeel
to be connecteel to the structure of the moelels (Aguirre
anel Billings, 1995b) anel promising results have been re­
porteel for some systems using nonlinear global polynomials
with simplifieel structure (Kaeltke ei aliz, 1993; Aguirre anel
Billings, 1994c).

Rational moelels share with polynomials the advantage of
being linear in the parameters. This feature males it pos­
sible to use well known anel numerically robust algorithms
to estimate the parameters of such models. Moreover, 1'30­
tional moelels seem to extrapolate better than polynomials
(Farmer and Sidorowich, 198830).

The radial basis funetion (RBF) approach is a global inter­
polation technique with good localization properties anel it
is easy to implement as the algorithm is essentially inelepen­
elent of the elimension (Broomheael and Lowe, 1988; Cas­
elagli, 1989; Whaha, 1992). However performance of raelial
basis functions depeneis critically upon the centres (Chen ei
alii, 1990). For a few hunelreel elata points the choice of the
centres is a elifficult task and the solution of the problem
could become infeasible (Casdagli, 1989; Billings anel Chen,
1992).

a.pproximation depeneis on the choice of several operating
regimes where the system dynamics are approximately lin­
ear. This information has to be available a priori anel is
somewhat criticaI. The problem of selecting the operat­
ing points is similar to the choice of neighborhooels anel of
centres in other approaches.

Other representations for modelling nonlinear systems in­
elude Legenelre polynomials (Cremers anel Hübler, 1987),
neural networks (EIsner, 1992; Principe ei alii, 1992) and
weighteelmaps (Stokbro anel Umberger. 1992).

At present no particular representation can be regareleel as
the best for any application anel "fineling a good represen­
tation is largely a matter of trial anel error" (Farmer anel
Sielorowich, 198830). On the other hanel, it seems that global
polynomial models are in many respects simpler and there­
fore more convenient (Kadtke ei alii, 1993).

The remainder of this section investigates the use of global
polynomials with simplifieel structure to estimate elynami­
cal invariants of strange attractors.

2.3 NARMAX Models

Consider the nonlinear -ªutoregressive moving -ªverage
model with e2:;ogenous inputs (NARMAX) (Leontaritis anel
Billings, 198530; Leontaritis anel Billings, 1985b)

where n y , 71" anel n e are the maxÍlnUll1 lags consielereel for
the output, input and noise terms, respectively anel d is the
elelay measured in sampling intervals, Ts . Moreover, u(k)
and y(k) are respectively input and output time series ob­
tained by sampling the continuous data ll(k) anel y(ld at
Ts . Furthermore, e( k) accounts for uncertainties, possible
noise, unmodelleel dynamics, etc. anel p([.] is some nonlin­
ear function ofy(k), 1l.(k) anel e(k) with nonlinearity degree
f.E Z+. In this papel', the map F([.] is taken to be a poly­
nomial of elegreee. In oreler to estimate the parameters of
this map, equation (4) has to be expresseel in preeliction
errar form as

y(k) = wT(k - 1)<3 + ç(k)

Local approximants are concerned with the mapping of a
set of neighbouring points in a reconstructed state space
into their future values. A major problem here is to se­
lect the neighbourhooels because such a choice is criticaI
anel there coulel be hundreels OI' even thousands of these
(Farmer anel Sielorowich, 1988ab). The size of the neigh­
bourhooels elepenels on the noise leveI and the complexity
of the dynamics (Farmer anel Sielorowich, 1991).

A simpIe alternative to nonlinear modeling is the use of
piecewise-linear representations (Billings anel Voon, 1987).
The eliscontinuities among the several linear modeIs which
compose a piecewise-linear moelel, can provide effects sim­
ilar to those observeel in nonlinear modeIs such as elmos
(Mahfouz and Badrakhan, 199030; MahfollZ and Baelrakhan,
1990b ). However, as other local representations, the fi­
nal model is piecewise-linear and therefore eliscontinuous.
Piecewise-linear moelels have been founel to be unreliahle in­
dicators of the underlying dynamics in some cases (Billings
and Voon, 1987), anel a possible explanation for this is that
such modeIs violate the physically motivated hypothesis of
smooth elynamical systems (Crutchfield anel McNamara,
1987). Thus local predictors may not always be suitable
for predicting invariant measures (Brown ei alii, 1991).

y(k) = F( [y(k - 1),

u(k - d),

e(k),

where

y(k - n y ),

u(k-d-n,,+l),

,e(k-ne )] , (4)

(5)

anel where w~" (k -1) is a matrix which contains linear anel
nonlinear combinations of output anel input terms up to and

Smooth interpolation functions have been suggested as a
way of alleviating the problem causeel by eliscontinuities in
piecewise-linear moelels (Johansen anel Foss, 1993). Such
functions have localiseel properties which confer to the final
moelels composeel in this way some similarities with raelial
basis functions. As woulel be expecteel, the quality of the

(6)
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including time k-l. The matrices \Ii;"ç(k:-l) and \Ii[(k-l)
are defined similarly. The parameters corresponding to ~ach

term in such matrices are the elements of the vectors 8 y",

êy"ç anel ê ç, respectively. Fina11y, é,( k:) are the residuaIs
which are defined as the difference between the measureel
data y(k) and the one-step-ahead prediction \liT(k - 1)8.
The parameter vector 8 can be estimated by minimizing
the fo11owing cost function (Chen ci alú, 1989).

(7)

where II . II is the Euclidean norm. Moreover, least
squares minimization is performed using orthogonal tech­
niques in order to effectively overcome two major elifficul­
ties in nonlinear model identification, namely i) numeri­
cal i11-conditioning and ii) structure selection. In order
to circumvent such problems orthogonal techniques may
be used (Bi11ings ei alá, 1988; Korenberg and Paarmann,
1991).

2.4 Structure Selection

The number of terms in a polynomial grows very rapidly
even for relativdy lo\\' values ofe, n y , n" and n e . This is
too difficult a problem to be solved by trial and error. How­
ever, effective anel elegant solutions to handle this prob­
lem are availahk. see (Bi11ings ci alá, 1988; Aguirre and
Bi11ings, 199!)d) anel the survey paper by Haber anel Un­
behauen (Haber anel Unbehauen, 1990). One solution is
the crror ndl/clion ratio (ERR) test (Bi11ings ei alii, 1988;
Bi11ings ei alii. H)S9: h:orenberg ei alii, 1988). Two advan­
tages of this approach are i) it does not require the estima­
tion of a complete model to determine the significance of a
candidate term and its contribution to the output, and ii)
the ERR test is eleriveel as a by-product of the orthogonal
estimatioll algori t hm.

Because the final models will be composed of a reduced
number of terms. which is a sma11 fraction of the total num­
ber of candidate terms, the models in this paper can be
viewed as 'simplified' or 'concise' global polynomials. It is
believed that these moelels overcome some of the practica.l
difficulties usua11y reported for non-simplified polynomials.

In a recent paper it has been shown that the ERR criterion
gives qua.litatively similar results as higher order spectrum
techniques in eletecting nonlinear interactions within the
under1ying dynamics (Aguirre and Bi11ings, 1994a). A cri­
terion similar to ERR has been used to generate radial basis
functions with a small number of parameters (Mees, 1993).
Other techniques can be used in connection with ERR such
as the zeroing-and-refitting approach (Kadtke ct alii, 1993)
and the concept of term clustering (Aguirre and Bi11ings,
1995d).

In a multivariable modei with l' inputs and m outputs,
the entries in equation (4) are vectors, that is tt(k) =
[uttk) 'Ur(kW, y(k) = [ydk) ... Ym(kW and , e(k) =
[e1 (k) em (k)]T, and both structure detection and pa-
rameter estimation can be performed 111 a way which is

ana.logous to the monovariable case (Bi11ings cf ahi, 1989).

The quantity ERR provides an indication of which terms to
include in the model. In other words, the ERR test provides
a means of ordering all the candidate terms according to a
hierarchy which depends on the l'elative importance of each
termo It should be noted that no trial-and-error is necessary
for this. However, the fo11owing question arises: how many
terms should be included in the model? A practica.l way of
addressing this question is by means of informaiion criieria
such as the final prediction error (FPE) (Akaike, 1974),
Akaikc 's information criterion (AIC) (Akaike, 19(4), the
Bayes'ian infon11aiion criterion (ElC) (Kashyap, 1977), the
model eniropy (Crutchfield and McN amara, 1987) and the
Schwar:: informaiion criierion (Mees, 199:3). See (Gooijer
ei alá, 198:3) for a survey of such techniques.

2.5 Model Validation

The last step in any identification problem is the valida­
tion of the estimated models which is not a trivial problem.
Most 'conventional' approaches to modei validation are not
particularly attractive when the modeis are chaotic and
therefore alternative invariants should be used to quantify
the quality and adequacy of the estimated models. When
va.lidating nonlinear models it is desirable that the crite­
ria used should be sensitive to the 'fundamental' features
of the models. In this respect it has been shown that bi­
furcation diagrams are far more sensitive to variations in
model structure (Aguirre and Billings, 1994c) than many
other nonlineal' invariants used in model validation such as
Poincaré maps (Casdagli, 1989; Gottwa.ld ei alii, 1992) cor­
relation dimension (Grassberger ei alli, 1991), Lyapunov
exponents (Abarbanel et alii, 1989; Principe ei alii, 1992),
reconstructed phase-space plots (Adomaitis ei alli, 1990).
Recently, the concept of synchl'onization, which is rather
we11 known in the field of control of chaos, has been sug­
gested as a nontrivia.l test for validating estimated modeis
(Brown ei alli, 1994).

Finally, it should be pointed out that most of the results
described so far in this section have been obtained using
the tools described in the first paper of the series. Many of
the commonly used statistica.l toois are of very limited use
in assessing dynamical properties of estimated models.

2.6 NARMAX and Other Approaches

Unlike many localized techniques, the NARMAX approach
does not involve finding neighborhoods, thus Nn = 1 and
a11 the data belong to a unique 'neighbourhood', that is,
y(k) EU1 k =de, ... , N. This reduces the number of data
required to estimate the dynamics. Moreover, the delay
time is taken to be equal to the sampling period, thus T =Ts .

There are a number of important differences between NAR­
MAX polynomial identification and other methods. First, a
NARMAX modei includes input terms. This enables fitting
data from non-autonomous systems and therefore estimat­
ing input/output maps, see (Casdagli, 1992; Hunter, 1992)
for related ideas on this subject. An immediate consequence
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of this is that for inputjoutput systems, it is not required
that the output be on any particular attractor. Once an
inputjoutput modeI has been estimated, a particular input
can be used to generate data on a specific attractor.

Another important difference is the presence of noise terms,
that is, the moving average part of the model. It should be
noted that equation (2) will only hold in the unlikely case
when noise is ahsent. Any noise in the data OI' any im­
perfection in the estimate of the map h will result in an
extra term in the right hand side of equation (2). Such
a term would be responsible for modelling the mismatch
introduced by the noise and unmodelled dynamics. It is
a well known result in the theory of system identification
that if such a term is omitted from the model structure, the
estimat.e of the map IT will become biased during param­
eter estimation (Soderstrom and Stoica, 1989) and llonlin­
ear models are no exception to this mIe (Billings and Voon,
1984).

(a)

1.Sr--~--~--~-~--~----,

o.s

-o.s

-1

-':l.Ls--_~,---o~.-=-s --~o--~o.-=-s --~----",.s

x(k)

(b)

1.Sr--~--~--~-~--~----'

marked with circles

-':l'::-.s---~,---o-::'.-=-s---=-o---::'o.-=-s--c------:",.s
x(k)

.-.- .....-,

-o.s

Figure :3 - First return map for (a) the Hénon map con­
taminated with noise. Only the encircled data were used in
the estimation, (b) the identified map of equation (8).

x(k) = 0.99433 - 1.3818 x(k - 1)2 + 0.29302 x( J..~ - 2) . (8)

o.s

Summarising, equation (5) is a hybrid modeI since it is com­
posed of a deterministic part and a stochastic component.
The latter is only used during parameter estimation in 01'­

der to avoid bias on the formeI'. Therefore, in this papel'
the modeIs used to generate the surrogate data are purely
deterministic a.!though the stochastic part of the modeIs is
also represented for clarity. Thus, the deterministic com­
ponent of the identified modeIs is an approximation to the
dynamics, that is, fT :::::: W;lI(J..~ - 1)Ê>y" where T=Ts ·

It seems that when the noise is white and enters the sys­
tem as a purely additive component, the division of the
data into neighbourhoods and subsequent estimation re­
duces the bias. This will not be the case however if the
modeI is global 01' if the noise is correlated. Thus in 01'­

der to avoid bias a modeI for the noise and uncertainties,
w;lIç(k - 1)0ylIç + wl(J..~ - 1)Ê>ç, is included in the model
structure before proceeding to parameter estimation. Once
parameters have been estimated, only the deterministic
part of the model is used, namely W;lI (J..~ - 1)Ê>Yll' This
procedure can handle moderate amounts of white and cor­
related noise.

2.7 Modeling of Dynamical Systems

In this section some of examples are given to illustrate the
performance of NARMAX polynomia.!s in the moelelling of
nonliner systems. It is worth stressing that the stochastic
component of some modeIs is represented for greater clarity
since such component is needeel eluring parameter estima­
tion to avoid bias. However, only the deterministic part is
aetually used to iterate the modeIs in arder to generate the
figures. The emphasis is on the reconstruction of dynamical
properties.

The first return map for this equation is shown in figure 3b
and has a correlation dimension of De =1.11 ± 0.22 which
shows good agreement with the origina.! map for which
De =1.21 ± 0.01. The correlation elimension estimated eli­
rectly from 20000 data points with the same SNR as above
was De = 1.76 ± 0.06 revealing that the estimated value
is quite sensitive to such leveIs of noise. Further improve­
ment can be achieved by using more than 50 points, but
the objective in this example was to show that the map
can be estimated fairly accurately from a short and noisy
time series.

2.7.1 Poincaré Sections

The first return map for 1000 points taken from data ob­
tained from the Hénon map (Hénon, 1976) is shown in figure
3a. The following model was estimated from the 50 points

In the case of driven oscillators, the practica.! reconstruction
of Poincaré sections is restricteel to controlled experiments
because of the large amount of data required since only one
point in such sections is obtained for each forcing period.
Moreover, sma.ll amounts of noise often blur the delicate
fracta.! structure of the attractor anel the Poincaré sections
tend to become fuzzy.
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The fuzziness in the Poincaré sections introduced by the
noise is a direct consequence of superimposing a stochas­
tic component on the top of a purely deterministic tra­
jectory. The Poincaré sections reconstructed using NARX
modeIs do not suffer from such fuzziness because although
the stochastic component was present during the model es­
timation, the effects of such a component were 'absorbec!'
by the moving average (MA) part of the moc!el enahling
unbiased estimation. The NARX part of the moc!el, which
is purely deterministic. will 110i inc!uce any fuzziness in the
Poincaré sections. The fact that the moc!els are not per­
fect, however, will be revealed by possible distortions in the
shape 01' the reconstructec! attractors.

(a)

0.5

ã: O
~
>;

-0.5

-1

-1.5

The following model was obtainec! from 1500 data points
on the Duffing-Holmes attractor shown in figure 4a

-1.5 -1 -0.5 O
y(t)

(b)

0.5 1.5

y(k) 0.84725 y(l.:-l) + 0.35713 y(I.:-3)

0.694:31 x 10-1 y( k _1)3 + 0.12780 x 10-1 y( k-4)

+ 0.61:319 x 10-1 tl( k-l) + 0.40:325 y( k - 2)

0.24:349 x 10-3y( k-1)y(I.:-2)y(k-5) - 0.46215 y(k-5)

+ 0.096:n9u(k-:3) - 0.15316 y(k-2)y(k-3)y(k-4)

0.7:3618 x 10-2y(k-l )2 y (k-5)

+ 0.0711:.'22 1/(/;-I)y(k-3)y(k-4)

+ IJiT(k - 1)Êle+~(k) . (9)

Figure 4 - Poincaré sections (a) obtained f1'Om a noisy 01'­

bit of the Duffing-Holmes oscillator, (b) of the identified
moc!el ofequation (9). A=0.3 anel w=lrad/s,~) = 5.

An estimate of lhe original Poincaré section is shown in fig­
ure 4b which \"as obtained by iterating equation (9). This
reconstruct.eel Poincaré section is very similar to the original
one.

2.7.2 Bifurcation Diagrams

-1.5

-1.5 -1 -0.5 O
y(k)

0.5 1.5

Using 1500 data poilllS generatec! by simulation of the mod­
ified van der Pol eqnat.ion (see first paper), with this SNR,
sampled at T" =;r /SO. the foJlowing NARMAX model was
estimated

y( k) 0.8359~1 y( k -1) + 0.87488 x 10-1 y( k -4)

+ 0.68539 x 1O- 1 u(k-2) + 0.46776 x 10-2y(k_l)3

0.47330 y(k-6) + 0.12786 y(k-2)

+ 0.:37341 y( k - 3) - 0.22840 X 10-2u.( k -1)

+ 0.49.504 x 10-1 y(k-5) - 0.014841 y(k-l)2 y(k-2)

0.081389u.(k-3) + 0.038305 tl(k-5)

0.13.5.54 x 10-1 u( k -4) + 0.20404 x 10-2y(k - 2)2 y( k - 3)

0.34234 X 10-2y( k -1)y( k - 6)2

+ 0.35999 x 10-2y(k-2)y(k-4)y( k-6)

+ IJiT(1.: - I)Êle+~(k) . (lO)

This model also has a self-sustained oscillation with w =
1.56rad/s.

Figure 5 shows that the ic!entified model (10) does repro­
duce the major bifurcation patterns of the original system.

See figure 14a of the first papel' in the series for the original
bifurcation diagramo This is usually more demanding than,
for instance, requiring that a model should reproduce in­
variants associated with particular attractors (Aguirre and
Billings, 1994c).

2.7.3 Original and Embedded Trajectories

This section reports some results Cüncerning the use of
NARMAX polynomials in rep1'Oducing embedded and orig­
inal trajectories of strange attractors. To investigate this
the well known Chua's double scroll attractor is used. If
ali variables are measureel, multivariable NARMAX mod­
eIs can be fitted to the data and the iterated discrete-time
outputs can be used to reconstruct the original attractor
geometry in state-space.

The data in figure 6a were used to identify the following
multivariable model
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systems. This comprises one of the current phases in the
investigation of chaos (Mitschke, 1990; Chennaoui et alii,
1990; Schreiber and Grassberger, 1991; Broomhead et alii,
1992; Davies, 1992; Grassberger et alii, 1993; Holzfuss and
Kadtke, 1993).

Figure 6 - (a) Noisy trajectory used for identification,
SNR=72.9, 39.9 and75.5 dB for x, y and z components, re­
spectively. (b) Double scroll Chua's attractor reconstructed
from the identified modei in equation (11).

Some authors assume that some kind of a priori knowl­
edge concerning the original system is available such as a
piece of noise-free data (Marteau and Abarbanel, 1991),
the structure of the maps describing the underlying dy­
namics (Davies, 1992), ar even the complete maps, that
is, structure and parameters are known (Hammel, 1990;
Ozaki, 1993). However, a clear limitation in any real noise
reduction problem is that the underlying dynamics are not
usually known a priori and the map has to be estimated
(learned) from the noisy data as an integral part of the
noise reduction processo Consequently, the noise will pose
limitations on the amount of noise which can effectively be
eliminated. In the field of nonlinear dynamics, the main
objective of filtering a chaotic time series is to enable the
reconstruction and estimation of dynamical invariants such
as Poincarê sections, Lyapunov exponents and fractal di­
111enSlOns.

0.11282 x 10x(k -1) + 0.55867 y(k - 1)

0.47190 X 10-1 :r( k - 1)3

0.39895 X 10-1 y( k - 1 )z( k - 1)2

0.31229 X 10-2;;( k - 1 )2. + 0.18363 x 10-1 z(k - 1)

'lilrçyç, (k - 1 )Ê>çrçyç, +~x( k)

0.91948y(k -1) - 0.10392x10-3 z(k _1)2'

0.70843 x 10-1 x( k - 1) + 0.67800 x 10-1;;( k - 1)

0.13424 X 10-2x( k - 1)3

0.44206 x 10-3 x(k - l/y(k - 1)

'liL M , (k - l)Ê>çrM' +~y(k)

:r(k)

+

+

y(k)

+

+
+

;;(k) 0.96628 z(k - 1) - 0.95854 y(k - 1)

0.36719 X 10-1 x( k - 1) - 0.55765 X 10-1 y(k - 1)3

+ 0.10333x10-2 x(k _1)3

+ 0.0020536 x(k-1)y(k-l)z(k-1)

+ 'lilrçyç, (k - l)Ê>çrçyç, +Uk) . (11)

Figure 5 - Bifurcation diagram of the identified model of
equation (10). w=4rad/s.

_4'------'--.----~-----"----L-------.J

5 10 15 20

3 NOl5E REDUCTION

Similar models for the Lorenz and Rossler attractors have
been reported in (Aguirre and Billings, 1995e).

This estimated model settles to a strange attractor which
closely resembles the original double scroll Chua's attractor,
see figure 6b.

A difficulty which a.ppears to be common to most ap­
proaches for modelling nonlinear dynamical systems and
chaotic attractors is that realistically noise will be present
in the data. In particular, it has been conjectured that the
local divergence of nearby orbits in a chaotic system seems
to impose a natural limit on the accuracy of prediction­
based identification algorithms when the data are noisy
(Aguirre and Billings, 1995c). Consequently, there has been
great motivation to develop filtering techniques for chaotic
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II [.] =11 f}(k) - gdf}(k - 1)) li" + 11 f}(k + 1) - gJ.;(f}(k)) li"
(13)

Another objective of filtering nonlinear data is to enable
the identification of dynamically valid modeis which would
reproduce the aforementioned invariants from sequences of
filtered data. In a first attempt to solve this identifica­
tion problem, globalnonlinear predictors were used to filter
the data (Aguirre and Billings, 1995c). In such a proce­
dure the noise was separated from the signal by means of
(very) short-term predictions. Because a chaotic predictor
actl1 ally amplifies uncertainties in some'direction' in state
space, the aforementioned approach cannot be used to fil­
ter the noise by successive passes through the data and this
therefore limits the achievable noise reduction.

where 11 . II is the Euclielean norm, anel

h['] =11 f}(k) - y(k) li"

Another option is to choose h['] as above and

(14)

This problem can be alleviated by using global smoothers
because, unlike prediction-based techniql1es, smoothers are
well suited for filtering chaotic data via successive noise­
reduction iterations (Aguirre et ali!, 1995).

3.1 Filtering Techniques

It is usua.lly assumed that the noise is purely additive, 01' in
other words the noise is entirely observational (Crutchfield
and McNamara, 1987; Casdagli ef alii, 1991; Grassberger et
alii, 1991). Thus the noise reduction problem can be stated
as follows: given a chaotic time series x(t). it is desired to
filter the measured data y(t)=x(t)+e(t), where e(t) is the
addi tive noise, in order to recover x (i). This is useful in
'deaning' Poincaré sections and embedded attractors which
have been blurreel by noise.

Another aspect of this problem is to find a 'noise-reduced'
orbit f}(i) from which invariants such as '\1, De and the
attractor geometry can be more accurately estimated than
if the noisy data y(t) were used. This is sometimes referred
to as statistical noise reduction as opposed to recovering
x(t) from y(t) which has been called detailed noise reduetion
(Farmer anel Sidorowich, 1991). In this paper, the objective
is to be able to identify e1ynamically valid models from f}(t).

Filtering based on model predicteel outputs, whilst reducing
the noise content, in the data, willnot guarantee that f}(i)
remains dose to y(t) (and ultimately dose to xCi)) if the
latter is chaotic. Thus, to ensure that f}(t) remains close to
y(t), the following cost function can be useel

N

JNR = L {lI [y(k) - gJ.;(f}(k - 1))] + h [y(l.~) - y(k)]}
k=l

(12)

where N is the number of points in the data, II [.] and
h['] indicate functions which are usually metric norms and
gk (-) are linear maps which describe the dynamics in a
neighbourhood of a point on the tme orbit. Clearly II [.]
penalizes deviations from the true deterministic dynamics
described by gk(-) while h['] guarantees that the deaned
orbit remains dose to the measured orbit.

In particular, the following cost functions have been used
(Kostelich and Yorke, 1988; Kostelich and Yorke, 1990)

lI['] = 211 gJ.;(f}(k)) - f}(J..~ + 1) II T Pk (15)

where Jik are Lagrange multipliers (Fanner and Sielorowich,
1991).

In the field of system identification, improving the signol to
noise ratio (SNR) is also of interest because this facilitates
both the unbiaseel estimation of the parameter vector anel
the correct determination of the moelel structure. The chief
idea is to estimate the noise-fl'ee e1ata anel then use this
estimate to perform parameter estimation. A way of doing
this is to use the following preelictor which can be e1erived
from equation (5)

(16)

It should be realiseel that in the last equation the parame­
ter vector 0 yu was estimateel from the original noisy data
as is indicateel by the absence of the hat on the subscript
y. On the other hand, the matrix lliJu (t - 1) was formed
using predicted values of the data, that is y(t.) up to and
induding time t - 1. Because y(t) is an estimate of x(t),
equation (16) can be used in suboptimal parameter esti­
mation schemes (Billings and Voon, 1984). However, ifthe
data were chaotic aftel' a few iterations iJ(t) would not be
an accurate estimate of x(t) because of the sensitive de­
pendence on initial conditions. Therefore the use of iJ(t) in
suboptimal schemes seems somewhat restricted for chaotic
systems. The next two sections describe approaches which
overcome some of these problems.

3.2 The Resetting Filter

The following predictor has been suggesteel to overcome
some of the e1ifficulties associated with the filtering of
chaotic data (Aguirre and Billings, 1995c)

It should be noted that in this case iJ(t) is predicted based
on previous values of the measured data y( s), s ::; t-l, and
not based on previously prec!ictec! values such as in equation
(16). Moreover, since this prec!ictor is usec! to prec!ict only
one step into the future, the preelicted value iJ(t) is, in most
cases, guaranteed to remain dose to the data y(t). This can
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be interpreted as being a consequence of the resetting effect
achieved by using measured data to initialise the predictor
at each step. The predictor in equation (17) wiH be referred
to as the resetting filter (RF) and it is adequate for filtering
chaotic signals.

The qualitative effect attained by the resetting filter is, in
some respects, analogous to other methods. The resetting
effect of the RF guarantees that h['] (see equation (12))
is kept smal!. Moreover. the parameter vector of the RF is
obtained by millimising JLS in equation (7), which is clearly
analogous to -h['] in equation (12). The main difference
is that whilst gd') usually represents local linear maps,
\JíT(t - 1) e is a global nonlinear map which may include
inputs and residual in addition to output terms.

Predictor-basecl filtering for chaotic systems will not work
in general because of the inability of making long-term
accurate predictions along the unstable manifold. There­
fore in such directions, the filter would actually amplify
the noise (Schreiber and Grassberger, 1991). The same is
valid for the RF, but to a much lesser extent because of the
resetting effect which will guarantee that any noise ampli­
fication along the unstable manifold is kept to a minimum.
However, if several passes through the data are required to
attain the desired levei of noise reduction, it is inevitable
that the effect of positive Lyapunov exponents be mani­
fest. Consequently, the filtered data may not resemble the
original sequence and, in fact, might have a greater noise
content than the raw data.

1.2

0.8

0.4

o 200 500 700

3.3 Global Nonlinear Smoothers Figure 8
modei

N

Noisy (raw) time series for the Mackey-Glass

The difficulty with the resetting filter in equation (17) is
that it only uses past information to predict the future.
However, the dynamics can only be predicted with any cer­
tainty as t --;. ex) along the stable manifold. Conversely, the
dynamics can only be 'predicted' along the unstable man­
ifold in reverse time, that is as t --;. -<Xi (Schreiber and
Grassberger, 1991). In other words, in order to estimate
y(t), future information as weH as past information is re­
quired (Schreiber and Grassberger, 1991).

This motivates the search for NARMAX smoothers of the
form

unstable directions because it contains terms which relate
to the future. Such terms will enable 'predicting' in reverse
time since orbits converge along the unstable manifold as
t --;. -'x'. An iterative procedure for smoothing data us­
ing nonlinear smoothers has been given in (Aguirre et alii,
1995).

y(t) Fs' [y(t - n y ), ... , y(t - I), y(t + 1), ... , y(t + n y ),

'U(t - d - nu + 1), ... , 'U(t - d), 'U(t + d), ...

... , 'll(t + d + nu - I),

ç(t-1), ... ,Ç(t-ne )]+ç(t). (18) 3.3.1 An Example

It should be noted that equations analogous to (5)-(7) can
be derived for the smoother in equation (18). Moreover,
the ERR criterion, used to select the most important terms
to compose a NARMAX model, can also be used to select
the structure of the smoother and the same least squares
algorithm can be used to estimate the parameters.

From a dynamical point of view, the smoother in equation
(18) will also succeed in predicting the dynamics along the

Zero-mean Gaussian noise was added to a set of data ob­
tained from the Mackey-Glass model (Mackey and Glass,
1977) (see first papel' in the series). The resulting records
with SNR=40.2 dB were smoothed with global nonlinear
smoothers. Figures 7-9 respectively show the noise-free,
noisy and smoothed data for the Mackey-Glass model and
figure 10 shows the resulting data filtered following the
RF approach. These figures make it plainly clear that
prediction-type approaches for noise reduction are not suit­
able for chaotic data.
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Most of the works concerned with the control of chaos are
clevoted to stabilising a chaotic system to regular clynam­
ics, that is, fixeel points, perioelic orbits or quasiperioelic
regimes. The relateel pl'Oblem of elriving a system from a
regular to a chaotic regime has received less attention. This
type of control coulel be important in situations where chaos
is not only welcome but a.lso desirable (Golelberger ei alá,
1990; Chang, 1992; Ottino, 1992; Cuomo ei alii, 199;3; Wu
and CIma, 1993).

enhances heat transfer (Chang, 1992), improves 111lXlllg
in chemical reactions (Ottino, 1992), reduces ielle-channel
tones in modulators (Schreier, 1994) anel seems to have a
promising future in secure communication systems (Cuomo
ei alá, 199;3; "'"U anel CIma, 1993; Parlitz ef alii, 1992).
In aclelition, some authors have suggested that chaotic cly­
namics inelicate a hea.lthy state as opposed to the eliseases
which manifest as physiological periodic signa.ls (Glass et
alii, 1987; Golelberger ei alii, 1990). The matter of how
healthy chaos is, however. is far from settleel (Pool, 1989).
Consequently, techniques for controlling nonlinear elynam­
ics are requireel in oreler to provoke or suppress chaos or any
other elynamical regime accoreling to the particular appli­
cation at hand (Chen anel Dong, 1993a; Ditto anel Pecora,
1993; Hunt anel Johnson, 1993).

700200

v V

o

Figure 9 - Smoothed time series for the Mackey-Glass
model. Terms with both negative and positive lags were
used to compose the smoother, Np =10.
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Figure 10 Filtewd time series for the Mackey-Glass
model. Only l('rl11;'; \"it-h negative lags were used to compose
the resetting filIeI'. X p =10.
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Clearly, chaos is per se neither beneficiaI nor harmful as
describeel by James Gleick "In some applications, turbu­
lence is desirahle - insiele a jet engine, for example, where
efficient burning elepenels on rapiel mixing. But in most,
turbulence means disaster. Turbulent airfiow over a wing
elestl'OYs lift. Turbulent fiow in an oil pipe creates stupefy­
ing elrag" (Gleick, 1987, p. 122). Therefore it seems appro­
priate to search for control schemes which would perform
well in both situations.

4 CONTROL AND SYNCHRONIZATIDN
Df CHAOS

Is chaos a beneficiaI dynamical steaely state? This is a cen­
tral question in tlw control of chaotic systems. Of course,
if the answer to the above question is yes, a.pplieel scien­
tists and contl'Ol engineers would be investigating ways of
provoking chaos rat-her than suppressing it. A negative an­
swer, on the other hand, woulcl pl'Ompt researchers in the
opposite elirection.

If on the one hand sensitivity to initia.l conditions hampers
prediction-based contl'Ol schemes, on the other hand such
a property might turn out to be greatly advantageous from
a control point of view. To see this it should be recalleel
that if a system is sensitive to initial conditions, a sma.ll
perturbation at time ia can provoke relatively large effects
at time i > ia. This means that to achieve a certain contraI
objective may require a much smaller control action if the
system were chaotic. The prablem of COUl'se is to determine
how and when shoulel the control adion be applied. Some
works in this direction have appeared in the literature (Ott
ei alii, 1990; Ditto ei alii, 1990; Garfinkel ei alii, 1992;
Nitsche anel Dressler, 1992; Romeiras ei alii, 1992; Shinbrot
ei alii, 1990; Spano ei alá, 1991).

Because of the sensitive depenclence on initial conelitions,
displayed by chaotic systems, it is impossible to make ac­
curate long-term preclictions of such systems. In many sit­
uations, however, it is clesirable that the system uneler in­
vestigation be predictable. Furthermore, the appearance of
chaotic dynamics is not always welcome because in some
situations it has been associatecl with abnonnal behaviour
(Glass and Mackey, 1988, pages 177, 179).

Many different techniques have been investigated in the
context of contl'Olling chaos. Most met.hods can be groupeel
into two categories. \iVhen it. is desireel that. chaos be sup­
pressed the appraaches are labelled under conirol of chaos
and when t.he main objective is to make a syst.em follow
a chaot.ic trajectory t.he problem at hand is referred t.o as
synchronizaiion of chaos.

In other applications the onset of chaos seems to have sev­
eral aclvantages. For instance, it has been argued that "a
cognitive system musi be chaotic in order to perform ef­
fective signal processing" (Nicolis, 1984). Further, chaos

Chaos can be suppressed by the addition of small ampli­
tude perturbations (Braiman and Goldhirsch, 1991), ran­
dom perturbations (Kapitaniak, 1991), by paramet.ric driv­
ing (Dorning ei alii, 1992; Fl'Onzoni ei alii, 1991; Lima and
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Pettini, 1990), by means of feedback (Liu et alii, 1994).

The problem of synchronization has been investigated in
(CIma et alii, 1993; Kocarev et alii, 1993; Ogorzalek, 199:3;
Pecora, 1990; Wu anel CIma, 1993).

The stahilization of chaotic systems has been achieveel by
applying feedback (Chen and Dong, 1993b; Deelieu anel
Ogorzalek, 1994; Hunt, 1991; Pyragas, 1992; Roy et alii,
1992), frequency harmonic balance techniques (Genesio and
Tesi, 199:3; Genesio anel Tesi, 1992), conventional control
techniques (Hartley anel Mossayebi, 1993), open plus closeel
loop control (.lackson anel Grosu .. 1994), dynamical vibra­
tion absorbers (Kapitaniak et alii, 1993), adaptive control
(Sinha et alii, 1990; Vassiliaelis, 1993) and quantitative
feeelback elesign (QFD) (Yau et alii, 1993). The control of
multipie attraetor systems has been investigateel in (.J ack­
son, 1990).

Most of the references above are concerneel with systems
which are chaotic before control is applied. However, chaos
has been eletected in control systems in which the plant
was not chaotic. Conelitions for the occurrence of chaos in
feeelback systems (Genesio anel Tesi, 1991), adaptive control
(Mareels anel Bitmead, 1986; Mareels and Bitmeael, 1988;
Golden anel Yelstie, 1992) anel in eligital systems (Ushio and
Hsu, 1987) have been reported in the literature.

The use of ielentifieel moelels in the design of control schemes
has been addressed in (Aguirre anel Billings, 1994b; Aguirre
anel Billings, 1995a; Aguirre, 1995b). It turns out that as
long as an ielentified model reproduces some of the major
elynamical features of the system, such a moelel can be used
effectively in control problems. Many control schemes do
not require a moelel 01' may even work with a moelel which is
not dynamically valid but in such cases the control effort is
usually greater and the control quality significantly poorer.

5 FINAL REMARK5

The subject of nonlinear dynamical systems has attraeted
great attention in recent years. It is therefore natural that
various techniques for moeleling and reconstructing such
systems shoulel be investigated. In this respeet a landmark
has been Taken's theorem and a number of subsequent re­
sults which today form the fielel of embedology. Parallel to
these results, other techniques were developed by the en­
gineering community. Such methoels for the identification
of nonlinear systems useel other model structures such as
Volterra and Wiener models, NARMAX modeIs and neu­
ral networks. In the first part of this papel', the basic idea
of embeelding techniques has been reviewd. Similarly, the
estimation on NARMAX polynomial moelels has been dis­
cusseel and some differences between such approaches have
been pointed out. The moeleling of some nonlinear systems
has been illustrateel by numerical examples.

A major limitation in obtaining a good model for a nonlin­
ear system is the noise present in the data. Noise can be, in
a few cases, kept to a minimum but cannot be totally elim­
inated. Consequently there has been great interest in noise
reduction algorithms. Some of such algorithms have been

revieweel in a rather general framework anel two algorithms,
the resetting filter anel nonlinear smoothers, have been de­
scribed in some eletail. It has been pointeel out that if the
elata are chaotic special algorithms are usually required to
achieve effeetive noise reduction.

Finally, a major issue in nonlinear dynamics nowaelays is
the control of chaotic systems. An enormous amount of
papers have been publisheel on this subjeet in the last years
and a thorough review would be impossible. Nonetheless,
several relevant references have been provieled in oreler to
enable the reaeler to further investigate this topic.

Throughout the papel' it has been shown how NARMAX
moelels can be useel in the various problems concerning the
moeleling, noise reduction and control of nonlinear systems
and chaos.
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