Estratégias de Operação para Sistemas de Armazenamento de Energia conectados a Rede Elétrica de Distribuição

  • Bruna C. Ferreira Programa de Pós-Graduação em Engenharia Elétrica (PPGEL/UFSJ/CEFET-MG), Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG
  • Francisco C. R. Coelho Programa de Pós-Graduação em Engenharia Elétrica (PPGEL/UFSJ/CEFET-MG), Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG
  • Wesley Peres Programa de Pós-Graduação em Engenharia Elétrica (PPGEL/UFSJ/CEFET-MG), Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG
  • Junior N. N. Costa Programa de Pós-Graduação em Engenharia Elétrica (PPGEL/UFSJ/CEFET-MG), Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG
  • Victor F. Carvalho Programa de Pós-Graduação em Engenharia Elétrica (PPGEL/UFSJ/CEFET-MG), Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG
Keywords: Distributed Generation, Photovoltaic Energy, NSGA-II, OpenDSS

Abstract

The costs of large storage systems have been decreasing consistently over the past decade. Thus, employing this technology to improve the operation and planning of electrical power systems is getting economically viable. In this work, having storage resources available, some possible benefits to the network are investigated considering photovoltaics distributed generation. Two battery storage management systems are presented and compared, aiming to reduce the substation's peak load and improve the voltage profile during 24 hours. The first method is based on defining threshold values of the substation imported power. Thus, those power limits trigger the charge or discharge mode on the battery asset. The second operation strategy relies on a multiobjective optimization formulation, to be solved by the Non-dominated Sorting Genetic Algorithm II (NSGA-II). All simulations are carried out on MATLAB and OpenDSS environments. Applying the methodology on the IEEE 34-bus test system point that benefits to the grid can be obtained by relatively simple management logic, like the charge/discharge trigger, based on substation power. However, improved gains are found when the problem is formulated and solved by an optimization approach.
Published
2021-10-20
Section
Articles